i

ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Journal of Nuclear Materials 367-370 (2007) 251-256

journal of
nuclear
materials

www.elsevier.com/locate/jnucmat

Molecular dynamics modelling of radiation defects
in ferromagnetic a-iron

S.L. Dudarev **, P.M. Derlet °

& EURATOMIUKAEA Fusion Association, Culham Science Centre, Oxfordshire 0X14 3DB, UK
® Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

Abstract

The need to perform large-scale molecular dynamics simulations of radiation defects in ferritic steels has stimulated the
recent development of a ‘magnetic’ interatomic potential for body-centred cubic a-iron [1,2]. Here we describe the first
application of the new method to molecular dynamics modelling of radiation defects. We investigate the magneto-elastic
fields of defects and study their thermally activated migration. We propose that the origin of the low-temperature
(T < 120 K) resistivity recovery stages in irradiated o-iron is associated with clustering of self-interstitial atoms.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Magnetism has significant implications for
the structural stability of materials. Equilibrium
positions of atoms depend sensitively on magnetic
ordering in the case where the magnetic energy
and the difference between energies of competing
crystal phases are of the same order of magnitude.
This was noted by Hasegawa and Pettifor [3] who
showed that magnetism stabilizes the body-centred
cubic (bce) a-phase of iron. Thermal magnetic fluc-
tuations are responsible for the phase transition
from the bcc o to the fcc y phase occurring at
approximately 912 °C.
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So far the analysis of the relationship between
structural and magnetic properties was focused on
the treatment of spatially homogeneous crystalline
solids. It excluded the case of strong localized lattice
deformations, for example point defects and dislo-
cations, which are essential for predictive modelling
of materials for fusion and advanced nuclear
applications.

In this paper we give a brief summary of a new
approach to molecular dynamics simulations of
magnetic iron. This approach is based on a combi-
nation of the Stoner model treatment of band ferro-
magnetism [4] and the Ginzburg-Landau model [5].
The latter is the simplest model of a second-order
phase transition, and it provides a convenient means
for evaluating the energy of symmetry-broken
magnetic solutions. By combining the Stoner and
the Ginzburg-Landau models we are able to
derive the functional form of the magnetic part
of the many-body interatomic potential [1,2] and
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parameterize it in the form suitable for large-scale
molecular dynamics simulations.

Here we consider several applications of the new
method. We investigate magneto-elastic fields asso-
ciated with radiation-induced defects and disloca-
tion loops in ferromagnetic a-iron. We also study
the dynamics of migration of radiation-induced
defects in iron and show that, depending on the
compactness of a self-interstitial atom (SIA) cluster,
the interstitial atoms may form local (I10)-like
groups impeding thermally activated mobility of
clusters at low temperatures. We discuss implica-
tions of these findings for the treatment of cas-
cade damage effects under neutron irradiation.
Our findings suggest that the very low-temperature
(T < 120 K) recovery stages in irradiated o-iron
are likely associated with the formation of mobile
clusters of self-interstitial atoms.

2. Effect of magnetism on interatomic interactions

Ferromagnetism in bec iron results from a
combined effect of on-site electron exchange and
correlations, and quantum inter-site hopping of
3d-electrons. Hopping of electrons in the bcc lattice
of iron gives rise to the formation of a ~6 eV wide
d-band characterized by the distribution of the den-
sity of states D(E) shown in Fig. 1. The fact that in
the non-magnetic state the Fermi energy is at a max-
imum of the density of states gives rise to the Stoner
instability, and to the formation of a symmetry-
broken low-energy ferromagnetic state of the
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material. The total energy of band electrons (per
atom) in the Stoner model is given by

Ei = / : ED(E)dE + / : ED(E)dE — I{*/4,
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where the distribution of the density of states D(E)
is shown in Fig. 1, I is the Stoner parameter, eg;
and eg| are the Fermi energies of spin up and spin
down sub-bands. { is the magnetic moment per
atom given by the difference of the occupation
numbers of spin up and spin down states
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In the limit |{| < 1 Eq. (1), subject to the charge
neutrality condition

€F7 €F|
N = / D(E) dE+/ D(E)dE = const., (3)
can be approximated by the expression

1 2
Er() = Eun(0) + {m - 1} %+ - ()
where e is the Fermi energy of the non-magnetic
(( =0) state. If D(eg)l> 1 the non-magnetic state
is unstable with respect to the onset of ferromagne-
tism, and in this case in the vicinity of the point
{ =0 the total energy is a decreasing function of
magnetic moment {. Finding the equilibrium value
of magnetic moment requires finding a solution of
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Fig. 1. The projected on-site densities of 3d-states of bec iron found using the density functional full-potential linearized muffin-tin orbital
(FP LMTO) approach [6]. In bee iron the 3d-band contains approximately N = 6.57 d-electrons per atom. The Fermi energy of the non-
magnetic state (left panel) corresponds to the origin of the energy axis. In the ferromagnetic symmetry-broken state (right panel) there are
more electrons in the spin-up sub-band (grey) than electrons in the spin-down sub-band (black). The total area under the curve filled in

grey colour equals the magnetic moment per atom (.
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the full set of integral Eqgs. (1)—(3) corresponding to
the minimum of total energy (1). By repeatedly dif-
ferentiating Eq. (1) we find that this equilibrium
solution (corresponding to a ferromagnetic state)
is defined by the three conditions [1,2]

D(GF)] > 1,

I i
S / D(E)dE = 1
€FT — €F| Jop (5)
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The first equation is the condition of instability
of the non-magnetic state, the second derives from
the fact that at a minimum point 0E,/0l = 0. The
third condition follows from the fact that at a min-
imum the second-order derivative of the total
energy 0°E,/0{> must be positive.

The derivation of the functional form of the
many-body magnetic interatomic potential uses
Eq. (1), and is based on the assumption [7] that
the density of states scales as a function of the local
bandwidth W as D(E)= W 'F(E/W). The local
bandwidth W is proportional to the square root of
the pair-wise density term p, which in our case has
the same meaning as in the Finnis—Sinclair potential
model [8]. Using this approach, we find the fol-
lowing functional expression for the embedding
part of the magnetic many-body interatomic poten-
tial [1]
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where p. is the critical value of the effective density p
at which magnetic moment vanishes, and ©(x) is the
Heaviside function, @(x) =1 for x > 0 and @(x) =0
for x <0. The magnetic moment per atom is given
by a power-law approximation of the form [2]

(-2

where C and y are adjustable parameters chosen to
reproduce the ab-initio-derived bulk bcc moment
behaviour as a function of volume per atom. The
numerical values for the C and y parameters corre-
sponding to case study II of parametrization of the
potential [1] are, respectively, 2.929 ug and 0.259,
resulting in an equilibrium bulk magnetic moment
of 2.154 Bohr magnetons.

3. Magneto-elastic fields and thermal migration of
interstitial defects

Density functional calculations [9] show that
magnetic moments near the core of an interstitial
atom defect are very different from the bulk equilib-
rium value. Within the framework of the magnetic
potential formalism, we are able to relate the calcu-
lated value of the effective pairwise density function
p on an atom to the magnitude (but not to the direc-
tion) of magnetic moment (7) of the atom [2]. This
approach has recently been extended to include the
treatment of precession of directions of magnetic
moments at a finite temperature [10]. In this paper
we perform atomistic simulations using Eq. (6),
which provides information not only about the
non-magnetic and magnetic parts of the potential
energy of every atom forming a defect configuration,
but also about the distribution of the magnitude of
magnetic moments in the configuration. Fig. 2 shows
distributions of magnetic moments around (111),
(110) and (100) single self-interstitial atom (SIA)
defects. Magnetic moments are suppressed in the
regions of large compressive strain in the core of
the defects, and magnetism is enhanced in the
regions of tensile strain around the defects.

The advantage of using a semi-empirical molecu-
lar dynamics approach to evaluating magnetic
moments in a locally deformed ferromagnetic mate-
rial becomes particularly evident if we consider a
large dislocation loop. At present it is still computa-
tionally too expensive to apply density functional
methods to systems containing more than ~500 iron
atoms, while investigating the distribution of mag-
netic moments around a mesoscopic dislocation
loop in iron requires using a simulation cell contain-
ing approximately a million atoms. Fig. 3 shows the
distribution of magnetic moments in the vicinity of
(I111) and (100) interstitial dislocation loops. The
simulations were performed using supercells con-
taining 877952 atoms. They show that magnetism
is enhanced in the regions where atoms are under
tension (around the perimeter of a loop) and is sup-
pressed in the regions of compressive strain within
the glide prism of a loop. On average the presence
of interstitial defects in iron suppresses magnetic
moments. Indeed, the curve describing how a mag-
netic moment { depends on volume per atom V is
strongly asymmetric [11,2], and the increase of mag-
netic moment in the limit of large V (in the regions
of tensile strain) does not compensate the rapid
collapse of the moment in the limit of small V
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Fig. 2. Distribution of magnetic moments around a (111) (left panel), (110) (centre), and (100) (right panel) single self-interstitial atom
defect. The atoms shown in the images have potential energy greater than —4.315 eV, exceeding by 0.001 eV the potential energy of an
atom in a perfect lattice. The colour refers to the value of magnetic moment on an atom, where blue represents a moment equal to or less
than 2.13 pp and red a moment equal to or greater than 2.16 ug. The equilibrium value of magnetic moment in a perfect bec crystal lattice
is assumed to be 2.154 ug [11]. In all the figures the vertical axis is parallel to the 001 direction, and the defect configurations were rotated
around this axis to help visualize their structure. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 3. Distribution of magnetic moments around a 253-atom (111} (left panel) and around a 304-atom (100) (right panel) interstitial
dislocation loop. The similarity between the distribution of magnetic moments around a (100) loop and a hamburger is accidental. The
atoms shown in the images have potential energy greater than —4.315 eV (i.e. the potential energy of an atom shown in the figure exceeds
by 0.001 eV the potential energy of an atom in a perfect lattice), and the colour refers to the magnitude of magnetic moment of an atom.
Blue represents a moment equal to or less than 2.13 ug and red a moment equal to or greater than 2.16 ug. The model equilibrium value of
magnetic moment in a perfect bee crystal lattice is 2.154 ug. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

occurring in regions of compressive strain. The pre-
diction that interstitial atom clusters and dislocation
loops are in effect regions of low magnetic moment
can probably be verified experimentally using small-
angle neutron scattering (SANS).

In Refs. [1,2] we investigated the pathway of
migration of a single interstitial atom defect and
found that the activation energy for migration was
~0.32 eV, in good agreement with ab-initio calcula-
tions [12]. Molecular dynamics simulations per-
formed using earlier versions of empirical
potentials [13] predicted that migration of clusters

of self-interstitial atoms containing more than one
interstitial atom was characterized by fairly low
activation energies of the order of 0.025 eV. Density
functional calculations [12], on the other hand,
suggest that clusters containing up to three self-
interstitial atoms adopt the (110)-like configura-
tions characterized by low thermally activated
mobility. We carried out molecular dynamics simu-
lations of migrating self-interstitial clusters contain-
ing up to seven self-interstitial atoms. Simulations
were performed at 7= 50 K and extended up to
1 ns. We found that many of the clusters containing
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Fig. 4. Examples of a three-interstitial (left panel) and four-interstitial (centre and right panels) atom cluster configurations simulated
using constant-temperature molecular dynamics at 7= 50 K. The (1 10) groups responsible for the reduced mobility of the clusters are
highlighted by a darker colour. All the atoms forming these structures have a potential energy that exceeds by 0.1 eV the average potential
energy of atoms in the lattice. The compact four-interstitial cluster (centre) has a rhombus shape if viewed in the (111) direction. It retains

its linear configuration in the limit 7'— 0.

four or fewer self-interstitial atoms eventually col-
lapsed into relatively immobile configurations con-
taining (110)-like groups of atoms. Examples of
configurations adopted by some of the three- and
four-interstitial atom clusters found in our simula-
tions are shown in Fig. 4. Only very compact
clusters (for example a rhombus-shaped four-
interstitial cluster) adopted linear (111)-crowdion
configurations and continued migrating one-dimen-
sionally at low temperatures [14]. The effective acti-
vation energy E, for Brownian motion of (111)
crowdions forming the cluster was determined using
the nudged elastic band model. Using the magnetic
potential [1] we found that E, ~ 0.05¢V.

This observation has significant implications for
the interpretation of experimentally observed resis-
tivity recovery curves of bee iron. Clustering of self-
interstitial atoms in cascades in neutron-irradiated
or ion-irradiated iron [15] (as opposed to iron irradi-
ated by electrons, where the probability of clustering
of self-interstitial atoms is relatively low) will likely
result in the formation of a significant fraction of
self-interstitial atom clusters exhibiting high mobility
at low temperatures, as well as to the formation of
nearly immobile clusters similar to those shown in
Fig. 4. The presence of self-interstitial atom clusters
that retain mobility at very low temperatures should
give rise to resistivity recovery stages at temperatures
significantly lower than the temperature of stage I
(~120 K) corresponding to the onset of mobility of
single-interstitial atom defects.

Given that the migration energy (0.32¢eV) of a
single-interstitial atom defect corresponds to a
resistivity recovery stage at ~120 K, the activation
energy of ~0.05eV characterizing thermal migra-
tion of glissile self-interstitial atom clusters should
be expected to give rise to a recovery stage at

T ~ 20 K. Low-temperature recovery stages are well
documented in the case of non-magnetic bcc metals
[16], and a stage at 7= 23 K was in fact observed in
electron-irradiated pure iron [17].

We note that identifying recovery stages in iron
at low temperatures will likely require a great deal
of care since the generation of highly mobile self-
interstitial clusters under low-temperature irradia-
tion is going to be accompanied by the generation
of effectively immobile single-interstitial atom
defects and vacancies acting as pinning centres for
migrating self-interstitial clusters. Still, we antici-
pate that a study of complex kinetics of interaction
between defects formed under low-temperature irra-
diation will help understanding the microscopic ori-
gin of clustering of self-interstitial atom defects in
high-energy neutron collision cascades occurring
under neutron irradiation in ferromagnetic iron
and iron-based steels and alloys.
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